1、关于韩信赞李左车歇后语
一、关于韩信赞李左车歇后语
韩信赞李左车——人材不可多得
李左车:秦汉之际谋士。《汉书》记载:汉初,汉王刘邦采用了大将军韩信的计策,节节胜利。 一次,刘邦派韩信讨伐赵国。赵王和大将陈余,结集军队,堵守井陉。赵王的参谋李左车献计说:“井陉不能容两车并行,也不能容骑兵列队。如能抄小路去截断粮草,不出十天,必然败走。”赵王不肯采纳。韩信得知这个消息,十分赞赏李左车,觉得这样人材不可多得。便命部下要生擒他。结果赵王被俘,陈余阵亡,李左车被生擒。
[例]郑洪君学问渊博,技术高超,韩信赞李左车--人材不可多得啊
二、关于白骨精骗唐僧歇后语
白骨精骗唐僧——一计不成 再生一计
《西游记》中讲,白骨精第一次变个女子欺骗唐僧,被孙悟空打一棒,未曾打死。第二次变了个老妇人,又被孙悟空识破,第三次变个老头,最后被孙悟空打死。比喻花招多,都是坏主意。
[例]这个盗窃犯为了掩盖自己的罪行,逃避法律的制裁,使出了种种花招,像白骨精骗唐僧一样,一计不成,又生一计。
三、关于东郭先生救狼歇后语
东郭先生救狼——善恶不辨
东郭先生:明代马中锡《中山狼传》中的人物。因救助被赵简子追逐的中山狼,几乎被狼吃掉。
[例]你就放心吧,仁瑞可不是东郭先生救狼那种善恶不辨的人。
四、关于唐僧念经歇后语
唐僧念经——一本正(真)经
“正”与“真”谐音。正经:庄重、正派。形容庄重、严肃的态度。带有讽刺意味。()
[例] 小王蹦蹦跳跳地跑过来,大家以为他又要开玩笑了,谁料他竟唐僧念经--一本正(真)经地对大家说:“报告一个好消息:我们队得红旗了!”
2、韩信点兵歇后语
韩信点兵歇后语
对中国历史有一定了解的朋友都知道西汉开国功臣韩信,他与萧何、张良并列为汉初三杰。作为中国历史上赫赫有名的军事思想“谋战”派代表人物,并且被后人奉为“兵仙”和“战神”,在他的身上肯定衍生出很多富有文化、军事内涵的词汇,歇后语“韩信点兵——多多益善”就是其中一例哦!
韩信点兵——多多益善
关于“韩信点兵”
“韩信点兵”的成语来源淮安民间传说:刘邦曾经问他:“你觉得我可以带兵多少?”韩信:“最多十万。”刘邦不解的问:“那你呢?”韩信自豪地说:“越多越好,多多益善嘛!”刘邦半开玩笑半认真的说:“那我不是打不过你?”韩信说:“不,主公是驾驭将军的人才,不是驾驭士兵的,而将士们是专门训练士兵的。”
一、作为成语故事
淮安民间传说着一则故事——“韩信点兵”,其次有成语“韩信点兵,多多益善”。韩信带1500名兵士打仗,战死四五百人,站3人一排,多出2人;站5人一排,多出4人;站7人一排,多出6人。韩信马上说出人数:1049。
二、作为《孙子算经》题目的名称
在一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数。这样的问题,也有人称为“韩信点兵”。它形成了一类问题,也就是初等数论中的解同余式。
①有一个数,除以3余2,除以4余1,问这个数除以12余几?
解:除以3余2的数有:2,5,8,11,14,17,20,23……
它们除以12的余数是:2,5,8,11,2,5,8,11……
除以4余1的数有:1,5,9,13,17,21,25,29……
它们除以12的余数是:1,5,9,1,5,9……
一个数除以12的余数是唯一的。上面两行余数中,只有5是共同的,因此这个数除以12的余数是5。如果我们把①的问题改变一下,不求被12除的余数,而是求这个数。很明显,满足条件的数是很多的,它是5+12×整数,整数可以取0,1,2,……,无穷无尽。事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数。这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件。《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个。然后再与第三个条件合并,就可找到答案。
②一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数。
解:先列出除以3余2的数:2,5,8,11,14,17,20,23,26……
再列出除以5余3的数:3,8,13,18,23,28……
这两列数中,首先出现的公共数是8。3与5的最小公倍数是15。两个条件合并成一个就是8+15×整数,列出这一串数是8,23,38,……,再列出除以7余2的数2,9,16,23,30……
就得出符合题目条件的最小数是23。
事实上,我们已把题目中三个条件合并成一个:被105除余23。
河南省鹤壁市淇县云梦山鬼谷子
中国有一本数学古书《孙子算经》也有类似的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。”
术曰:“三三数剩一置几何?答曰:五乘七乘二得之七十。
五五数剩一复置几何?答曰,三乘七得之二十一是也。
七七数剩一又置几何?答曰,三乘五得之十五是也。
三乘五乘七,又得一百零五。
则可知已,又三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。”
3、歇后语:韩信点兵
歇后语:韩信点兵
韩信点兵——多多益善
汉高祖刘邦曾问大将韩信:“你看我能带多少兵?”韩信斜了刘邦一眼说:“你顶多能带十万兵吧!”汉高祖心中有三分不悦,心想:你竟敢小看我!“那你呢?”韩信傲气十足地说:“我呀,当然是多多益善啰!”刘邦心中又添了三分不高兴,勉强说:“将军如此大才,我很佩服。现在,我有一个小小的问题向将军请教,凭将军的大才,答起来一定不费吹灰之力的。”韩信满不在乎地说:“可以可以。”刘邦狡黠地一笑,传令叫来一小队士兵隔墙站队,刘邦发令:“每三人站成一排。”队站好后,小队长进来报告:“最后一排只有二人。”“刘邦又传令:“每五人站成一排。”小队长报告:“最后一排只有三人。”刘邦再传令:“每七人站成一排。”小队长报告:“最后一排只有二人。”刘邦转脸问韩信:“敢问将军,这队士兵有多少人?”韩信脱口而出:“二十三人。”刘邦大惊,心中的不快已增至十分,心想:“此人本事太大,我得想法找个岔子把他杀掉,免生后患。”一面则佯装笑脸夸了几句,并问:“你是怎样算的?”韩信说:“臣幼得黄石公传授《孙子算经》,这孙子乃鬼谷子的弟子,算经中载有此题之算法,口诀是:
三人同行七十稀,
五树梅花开一枝,
七子团圆正月半,
除百零五便得知。”
刘邦出的这道题,可用现代语言这样表述:
“一个正整数,被3除时余2,被5除时余3,被7除时余2,如果这数不超过100,求这个数。”
《孙子算经》中给出这类问题的解法:“三三数之剩二,则置一百四十;五五数之剩三,置六十三;七七数之剩二,置三十;并之得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十;五五数之剩一,则置二十一;七七数之剩一,则置十五,一百六以上,以一百五减之,即得。”用现代语言说明这个解法就是:
首先找出能被5与7整除而被3除余1的数70,被3与7整除而被5除余1的数21,被3与5整除而被7除余1的数15。
所求数被3除余2,则取数70×2=140,140是被5与7整除而被3除余2的数。
所求数被5除余3,则取数21×3=63,63是被3与7整除而被5除余3的数。()
所求数被7除余2,则取数15×2=30,30是被3与5整除而被7除余2的数。
又,140+63+30=233,由于63与30都能被3整除,故233与140这两数被3除的余数相同,都是余2,同理233与63这两数被5除的余数相同,都是3,233与30被7除的余数相同,都是2。所以233是满足题目要求的一个数。
而3、5、7的最小公倍数是105,故233加减105的整数倍后被3、5、7除的余数不会变,从而所得的数都能满足题目的要求。由于所求仅是一小队士兵的人数,这意味着人数不超过100,所以用233减去105的2倍得23即是所求。
这个算法在我国有许多名称,如“韩信点兵”,“鬼谷算”,“隔墙算”,“剪管术”,“神奇妙算”等等,题目与解法都载于我国古代重要的数学着作《孙子算经》中。一般认为这是三国或晋时的着作,比刘邦生活的年代要晚近五百年,算法口诀诗则载于明朝程大位的《算法统宗》,诗中数字隐含的口诀前面已经解释了。宋朝的数学家秦九韶把这个问题推广,并把解法称之为“大衍求一术”,这个解法传到西方后,被称为“孙子定理”或“中国剩余定理”。而韩信,则终于被刘邦的妻子吕后诛杀于未央宫。
4、有关韩信的歇后语
有关韩信的歇后语
韩信点兵——多多益善
韩信伐楚——明修栈道,暗渡陈仓
韩信:
韩信(约公元前231年-公元前196年),汉族,淮阴(原江苏省淮阴县,今淮阴区)人,西汉开国功臣,中国历史上杰出的军事家,与萧何、张良并列为汉初三杰。早年家贫,常从人寄食。秦末参加反秦斗争投奔项羽,后经夏侯婴推荐,拜治粟都尉,未得到重用。萧何向刘邦保举韩信,于是,刘邦拜韩信为大将军。韩信对刘邦分析了楚汉双方的形势,举兵东向,三秦可以夺取。刘邦采纳了这一建议,立即作了部署,很快占取了关中。在楚汉战争中,韩信发挥了卓越的军事才能。平定了魏国,又背水一战击败代、赵。之后,他又北上降服了燕国。汉四年,韩信被拜为相国,率兵击齐,攻下临淄,并在潍水全歼龙且率领援齐的二十万楚军。于是,刘邦遣张良立韩信为齐王,次年十月,又命韩信会师垓下,围歼楚军,迫使项羽自刎。汉朝建立后解除兵权,徙为楚王。被人告发谋反贬为淮阴侯,后吕后与相国萧何合谋,借口韩信谋反将其骗入长乐宫中,斩于钟室,夷其三族。韩信是中国军事思想“谋战”派代表人物,被萧何誉为“国士无双”,刘邦评价曰:“战必胜,攻必取,吾不如韩信。”韩信是中国军事思想“谋战”派代表人物,被后人奉为“兵仙”、“战神”。“王侯将相”韩信一人全任。“国士无双”、“功高无二,略不世出”是楚汉之时人们对其的评价。作为统帅,他率军出陈仓、定三秦、擒魏、破代、灭赵、降燕、伐齐,直至垓下全歼楚军,无一败绩,()天下莫敢与之相争;作为军事理论家,他与张良整兵书,并着有兵法三篇 。
故事:汉高祖刘邦曾问大将韩信:“你看我能带多少兵?”韩信斜了刘邦一眼说:“你顶多能带十万兵吧!”汉高祖心中有三分不悦,心想:你竟敢小看我!“那你呢?”韩信傲气十足地说:“我呀,当然是多多益善啰!”刘邦心中又添了三分不高兴,勉强说:“将军如此大才,我很佩服。现在,我有一个小小的问题向将军请教,凭将军的大才,答起来一定不费吹灰之力的。”韩信满不在乎地说:“可以可以。”刘邦狡黠地一笑,传令叫来一小队士兵隔墙站队,刘邦发令:“每三人站成一排。”队站好后,小队长进来报告:“最后一排只有二人。”“刘邦又传令:“每五人站成一排。”小队长报告:“最后一排只有三人。”刘邦再传令:“每七人站成一排。”小队长报告:“最后一排只有二人。”刘邦转脸问韩信:“敢问将军,这队士兵有多少人?”韩信脱口而出:“二十三人。”刘邦大惊,心中的不快已增至十分,心想:“此人本事太大,我得想法找个岔子把他杀掉,免生后患。”一面则佯装笑脸夸了几句,并问:“你是怎样算的?”韩信说:“臣幼得黄石公传授《孙子算经》,这孙子乃鬼谷子的弟子,算经中载有此题之算法。